容器网络2:深入解析容器跨主机网络

在前面的文章中,我们讨论了单机容器间通信的原理,并引出了“跨主机容器间通信问题”。接下来,我们重点讨论跨主机容器间通信的原理。

一、从Flannel项目说起

要理解容器“跨主机通信”的原理,就一定要先从 Flannel 这个项目说起。Flannel 项目是 CoreOS 公司主推的容器网络方案。事实上,Flannel 项目本身只是一个框架,真正为我们提供容器网络功能的,是 Flannel 的后端实现。目前,Flannel 支持三种后端实现,分别是:

  • UDP

  • VXLAN

  • host-gw

而这三种不同的后端实现,正代表了容器跨主机网络通信的三种主流实现方案。接下来,我们先来讨论前二种方案,即UDP和VXLAN。

二、Flannel UDP模式

假设,我们现在有两台宿主机:

  • 宿主机 Node 1 上有一个容器 container-1,它的 IP 地址是 100.96.1.2,对应的 docker0 网桥的地址是:100.96.1.1/24。
  • 宿主机 Node 2 上有一个容器 container-2,它的 IP 地址是 100.96.2.3,对应的 docker0 网桥的地址是:100.96.2.1/24。

而我们现在的任务是,让 container-1 访问 container-2。

2.1、路由

在这个场景中,container-1 容器里的进程发起的 IP 包,其源地址就是 100.96.1.2,目的地址就是 100.96.2.3。由于目的地址 100.96.2.3 并不在 Node 1 的 docker0 网桥的网段里,所以这个 IP 包会被交给默认路由规则,通过容器的网关进入 docker0 网桥,从而出现在宿主机上。

这时候,这个 IP 包的下一个目的地,就取决于宿主机上的路由规则了。此时,Flannel 已经在宿主机上创建出了一系列的路由规则,以 Node 1 为例,如下所示:

1
2
3
4
5
6
# 在Node 1上
$ ip route
default via 10.168.0.1 dev eth0
100.96.0.0/16 dev flannel0 proto kernel scope link src 100.96.1.0
100.96.1.0/24 dev docker0 proto kernel scope link src 100.96.1.1
10.168.0.0/24 dev eth0 proto kernel scope link src 10.168.0.2

可以看到,由于我们的 IP 包的目的地址是 100.96.2.3,它匹配不到本机 docker0 网桥对应的 100.96.1.0/24 网段,只能匹配到第二条、也就是 100.96.0.0/16 对应的这条路由规则,从而进入到一个叫作 flannel0 的设备中。而这个 flannel0 设备的类型就比较有意思了:它是一个 TUN 设备(Tunnel 设备)。

在 Linux 中,TUN 设备是一种工作在三层(Network Layer)的虚拟网络设备。TUN 设备的功能非常简单,就是在操作系统内核和用户应用程序之间传递 IP 包。以flannel0设备为例,像上面提到的情况,当操作系统将一个IP包发送给flannel0设备之后,flannerl0就会把这个IP包,交给创建这个设备的应用程序,也就是Flannel进程。而这是一个从内核态(Linux内核)向用户态(Flannel进程)的流动方向。反之,如果Flannel进程向flannel0设备发送了一个IP包,那么这个IP包就会出现在宿主机网络栈中,然后根据宿主机的路由表进行下一步处理。而这是一个从用户态向内核态的流动方向。

2.3、发送数据包

当 IP 包从容器经过 docker0 出现在宿主机,然后又根据路由表进入 flannel0 设备后,宿主机上的 flanneld 进程(Flannel 项目在每个宿主机上的主进程),就会收到这个 IP 包。然后,flanneld 看到了这个 IP 包的目的地址,是 100.96.2.3,就把它发送给了宿主机 Node 2 。

可是,flanneld 又是如何知道这个 IP 地址对应的容器,是运行在 Node 2 上的呢?

这里,就用到了 Flannel 项目里一个非常重要的概念:子网(Subnet)。事实上,在由 Flannel 管理的容器网络里,一台宿主机上的所有容器,都属于该宿主机被分配的一个“子网”。

在我们的例子中,Node 1 的子网是 100.96.1.0/24,container-1 的 IP 地址是 100.96.1.2。Node 2 的子网是 100.96.2.0/24,container-2 的 IP 地址是 100.96.2.3。而这些子网与宿主机的对应关系,正是保存在 Etcd 当中,如下所示:

1
2
3
4
$ etcdctl ls /coreos.com/network/subnets
/coreos.com/network/subnets/100.96.1.0-24
/coreos.com/network/subnets/100.96.2.0-24
/coreos.com/network/subnets/100.96.3.0-24

所以,flanneld 进程在处理由 flannel0 设备传入的 IP 包时,就可以根据目的 IP 的地址(比如 100.96.2.3),匹配到对应的子网(比如 100.96.2.0/24),从 Etcd 中找到这个子网对应的宿主机的 IP 地址是 10.168.0.3,如下所示:

1
2
$ etcdctl get /coreos.com/network/subnets/100.96.2.0-24
{"PublicIP":"10.168.0.3"}

而对于 flanneld进程 来说,只要 Node 1 和 Node 2 是互通的,那么 flanneld 作为 Node 1 上的一个普通进程,就一定可以通过上述 IP 地址(10.168.0.3)访问到 Node 2。

所以说,flanneld 在收到 container-1 发给 container-2 的 IP 包之后,就会把这个 IP 包直接封装在一个 UDP 包里,然后发送给 Node 2。不难理解,这个 UDP 包的源地址,就是 flanneld 所在的 Node 1 的地址,而目的地址,则是 container-2 所在的宿主机 Node 2 的地址。

当然,这个请求得以完成的原因是,每台宿主机上的 flanneld,都监听着一个 8285 端口,所以 flanneld 只要把 UDP 包发往 Node 2 的 8285 端口即可。

2.3、接收数据包

通过这样一个普通的、宿主机之间的 UDP 通信,一个 UDP 包就从 Node 1 到达了 Node 2。而 Node 2 上监听 8285 端口的进程也是 flanneld,所以这时候,flanneld 就可以从这个 UDP 包里解析出封装在里面的、container-1 发来的原 IP 包。而接下来 flanneld 的工作就非常简单了:flanneld 进程会直接把这个 IP 包发送给它所管理的 TUN 设备,即 flannel0 设备。

根据我们前面讲解的 TUN 设备的原理,这正是一个从用户态向内核态的流动方向(Flannel 进程向 TUN 设备发送数据包),所以 Linux 内核网络栈就会负责处理这个 IP 包,具体的处理方法,就是通过本机的路由表来寻找这个 IP 包的下一步流向。而 Node 2 上的路由表,跟 Node 1 非常类似,如下所示:

1
2
3
4
5
6
# 在Node 2上
$ ip route
default via 10.168.0.1 dev eth0
100.96.0.0/16 dev flannel0 proto kernel scope link src 100.96.2.0
100.96.2.0/24 dev docker0 proto kernel scope link src 100.96.2.1
10.168.0.0/24 dev eth0 proto kernel scope link src 10.168.0.3

由于这个 IP 包的目的地址是 100.96.2.3,它跟第三条也就是 100.96.2.0/24 网段对应的路由规则匹配更加精确。所以,Linux 内核就会按照这条路由规则,把这个 IP 包转发给 docker0 网桥。

接下来,docker0 网桥会扮演二层交换机的角色,将数据包发送给正确的端口,进而通过 Veth Pair 设备进入到 container-2 的 Network Namespace 里。

而 container-2 返回给 container-1 的数据包,则会经过与上述过程完全相反的路径回到 container-1 中。

3.4、小结

需要注意的是,上述流程要正确工作还有一个重要的前提,那就是 docker0 网桥的地址范围必须是 Flannel 为宿主机分配的子网。这个很容易实现,以 Node 1 为例,我们只需要给它上面的 Docker Daemon 启动时配置如下所示的 bip 参数即可:

1
2
$ FLANNEL_SUBNET=100.96.1.1/24
$ dockerd --bip=$FLANNEL_SUBNET ...

以上,就是基于 Flannel UDP 模式的跨主通信的基本原理了。我们可以把它总结成了一幅原理图,如下所示:

image-20201006104328521

可以看到,Flannel UDP 模式提供的其实是一个三层的 Overlay 网络,即:它首先对发出端的 IP 包进行 UDP 封装,然后在接收端进行解封装拿到原始的 IP 包,进而把这个 IP 包转发给目标容器。这就好比,Flannel 在不同宿主机上的两个容器之间打通了一条“隧道”,使得这两个容器可以直接使用 IP 地址进行通信,而无需关心容器和宿主机的分布情况。

UDP 模式有严重的性能问题,所以已经被废弃了。实际上,相比于两台宿主机之间的直接通信,基于 Flannel UDP 模式的容器通信多了一个额外的步骤,即 flanneld 的处理过程。而这个过程,由于使用到了 flannel0 这个 TUN 设备,仅在发出 IP 包的过程中,就需要经过三次用户态与内核态之间的数据拷贝,如下所示:

image-20201006104704247

我们可以看到:

  • 用户态的容器进程发出的 IP 包经过 docker0 网桥进入内核态;

  • IP 包根据路由表进入 TUN(flannel0)设备,从而回到用户态的 flanneld 进程;

  • flanneld 进程进行 UDP 封包之后重新进入内核态,将 UDP 包通过宿主机的 eth0 发出去。

此外,我们还可以看到,Flanneld 进程进行 UDP 封装(Encapsulation)和解封装(Decapsulation)的过程,也都是在用户态完成的。在 Linux 操作系统中,上述这些上下文切换和用户态操作的代价其实是比较高的,这也正是造成 Flannel UDP 模式性能不好的主要原因。

所以说,我们在进行系统级编程的时候,有一个非常重要的优化原则,就是要减少用户态到内核态的切换次数,并且把核心的处理逻辑都放在内核态进行。这也是为什么,Flannel 后来支持的VXLAN 模式,逐渐成为了主流的容器网络方案的原因。

三、Flannel VXLAN模式

VXLAN,即 Virtual Extensible LAN(虚拟可扩展局域网),是 Linux 内核本身就支持的一种网络虚似化技术。VXLAN 可以完全在内核态实现上述封装和解封装的工作,从而通过与前面相似的“隧道”机制,构建出覆盖网络(Overlay Network)。

VXLAN 模式的覆盖网络的设计思想是:在现有的三层网络之上,“覆盖”一层虚拟的、由内核 VXLAN 模块负责维护的二层网络,使得连接在这个 VXLAN 二层网络上的“主机”(虚拟机或者容器都可以)之间,可以像在同一个局域网(LAN)里那样自由通信。当然,实际上,这些“主机”可能分布在不同的宿主机上,甚至是分布在不同的物理机房里。

为了能够在二层网络上打通“隧道”,VXLAN 会在宿主机上设置一个特殊的网络设备作为“隧道”的两端。这个设备就叫作 VTEP,即:VXLAN Tunnel End Point(虚拟隧道端点)。而 VTEP 设备的作用,其实跟前面的 flanneld 进程非常相似。只不过,它进行封装和解封装的对象,是二层数据帧(Ethernet frame);而且这个工作的执行流程,全部是在内核里完成的(因为 VXLAN 本身就是 Linux 内核中的一个模块)。

基于 VTEP 设备进行“隧道”通信的流程,我们也可以总结成一幅图,如下所示:

image-20201006111549970

可以看到,图中每台宿主机上名叫 flannel.1 的设备,就是 VXLAN 所需的 VTEP 设备,它既有 IP 地址,也有 MAC 地址。

3.1、路由

现在假设,我们的 container-1 的 IP 地址是 10.1.15.2,要访问的 container-2 的 IP 地址是 10.1.16.3。与前面 UDP 模式的流程类似,当 container-1 发出请求之后,这个目的地址是 10.1.16.3 的 IP 包,会先出现在 docker0 网桥,然后会被路由到本机的 flannel.1 设备进行处理。也就是说,它来到了“隧道”的入口。为了方便叙述,我们接下来会把这个 IP 包称为“原始 IP 包”。

3.2、内部封包

3.2.1、确定目的VTEP设备

为了能够将“原始 IP 包”封装并且发送到正确的宿主机,VXLAN 就需要找到这条“隧道”的出口,即:目的宿主机的 VTEP 设备。而这个设备的信息,正是每台宿主机上的 flanneld 进程负责维护的。比如,当 Node 2 启动并加入 Flannel 网络之后,在 Node 1(以及所有其他节点)上,flanneld 就会添加一条如下所示的路由规则:

1
2
3
4
5
$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
...
10.1.16.0 10.1.16.0 255.255.255.0 UG 0 0 0 flannel.1

这条规则的意思是:凡是发往 10.1.16.0/24 网段的 IP 包,都需要经过 flannel.1 设备发出,并且,它最后被发往的网关地址是:10.1.16.0。从Flannel VXLAN 模式的流程图中我们可以看到,10.1.16.0 正是 Node 2 上的 VTEP 设备(也就是 flannel.1 设备)的 IP 地址。为了方便叙述,接下来我们把 Node 1 和 Node 2 上的 flannel.1 设备分别称为“源 VTEP 设备”和“目的 VTEP 设备”。

3.2.2、确定目的VTEP设备的MAC地址

在这些 VTEP 设备之间,需要想办法组成一个虚拟的二层网络,即:通过二层数据帧进行通信。所以在我们的例子中,“源 VTEP 设备”收到“原始 IP 包”后,就要想办法把“原始 IP 包”加上一个目的 MAC 地址,封装成一个二层数据帧,然后发送给“目的 VTEP 设备”(当然,要这么做还是因为这个 IP 包的目的地址不是本机)。

这里还需要解决的问题是:“目的 VTEP 设备”的 MAC 地址是什么?

此时,根据前面的路由记录,我们已经知道了“目的 VTEP 设备”的 IP 地址。而要根据三层 IP 地址查询对应的二层 MAC 地址,这正是 ARP(Address Resolution Protocol )表的功能。而这里要用到的 ARP 记录,也是 flanneld 进程在 Node 2 节点启动时,自动添加在 Node 1 上的。我们可以通过 ip 命令看到它,如下所示:

1
2
3
# 在Node 1上
$ ip neigh show dev flannel.1
10.1.16.0 lladdr 5e:f8:4f:00:e3:37 PERMANENT

这条记录的意思非常明确,即:IP 地址 10.1.16.0,对应的 MAC 地址是 5e:f8:4f:00:e3:37。最新版本的 Flannel 并不依赖 L3 MISS 事件和 ARP 学习,而会在每台节点启动时把它的 VTEP 设备对应的 ARP 记录,直接下放到其他每台宿主机上。

2.2.3、内部二层封装

有了这个“目的 VTEP 设备”的 MAC 地址,Linux 内核就可以开始二层封包工作了。这个二层帧的格式,如下所示:

image-20201006113008762

可以看到,Linux 内核会把“目的 VTEP 设备”的 MAC 地址,填写在图中的 Inner Ethernet Header 字段,得到一个二层数据帧。需要注意的是,上述封包过程只是加一个二层头,不会改变“原始 IP 包”的内容。所以图中的 Inner IP Header 字段,依然是 container-2 的 IP 地址,即 10.1.16.3。

但是,上面提到的这些 VTEP 设备的 MAC 地址,对于宿主机网络来说并没有什么实际意义。所以上面封装出来的这个数据帧,并不能在我们的宿主机二层网络里传输。为了方便叙述,我们把它称为“内部数据帧”(Inner Ethernet Frame)。

3.2.4、VXLAN封装

然后,Linux 内核还需要再把“内部数据帧”进一步封装成为宿主机网络里的一个普通的数据帧,好让它“载着”“内部数据帧”,通过宿主机的 eth0 网卡进行传输。我们把这次要封装出来的、宿主机对应的数据帧称为“外部数据帧”(Outer Ethernet Frame)。

为了实现“搭便车”的机制,Linux 内核会在“内部数据帧”的前面,加上一个特殊的 VXLAN 头(VXLAN Header),用来表示这个“乘客(内部数据帧)”实际上是一个 VXLAN 要使用的数据帧。这个 VXLAN 头里有一个重要的标志叫作 VNI,它是 VTEP 设备识别某个数据帧是不是应该归自己处理的重要标识。而在 Flannel 中,VNI 的默认值是 1,这也是为何,宿主机上的 VTEP 设备都叫作 flannel.1 的原因,这里的“1”,其实就是 VNI 的值。

3.3、外部封包

最后,Linux 内核会把这个数据帧封装进一个 UDP 包里发出去。跟 UDP 模式类似,在宿主机看来,它会以为自己的 flannel.1 设备只是在向另外一台宿主机的 flannel.1 设备,发起了一次普通的 UDP 链接。它哪里会知道,这个 UDP 包里面,其实是一个完整的二层数据帧。这是不是跟特洛伊木马的故事非常像呢?

3.3.1、确定UDP包的目的宿主机

不过,不要忘了,一个 flannel.1 设备只知道另一端的 flannel.1 设备的 MAC 地址,却不知道对应的宿主机地址是什么。

也就是说,这个 UDP 包该发给哪台宿主机呢?

在这种场景下,flannel.1 设备实际上还要扮演一个“网桥”的角色,在二层网络进行 UDP 包的转发。而在 Linux 内核里面,“网桥”设备进行转发的依据,来自于一个叫作 FDB(Forwarding Database)的转发数据库。不难想到,这个 flannel.1“网桥”对应的 FDB 信息,也是 flanneld 进程负责维护的。它的内容可以通过 bridge fdb 命令查看到,如下所示:

1
2
3
# 在Node 1上,使用“目的VTEP设备”的MAC地址进行查询
$ bridge fdb show flannel.1 | grep 5e:f8:4f:00:e3:37
5e:f8:4f:00:e3:37 dev flannel.1 dst 10.168.0.3 self permanent

可以看到,在上面这条 FDB 记录里,指定了这样一条规则,即:发往我们前面提到的“目的 VTEP 设备”(MAC 地址是 5e:f8:4f:00:e3:37)的二层数据帧,应该通过 flannel.1 设备,发往 IP 地址为 10.168.0.3 的主机。显然,这台主机正是 Node 2,UDP 包要发往的目的地就找到了。

3.3.2、外部封装

所以接下来的流程,就是一个正常的、宿主机网络上的封包工作。

我们知道,UDP 包是一个四层数据包,所以 Linux 内核会在它前面加上一个 IP 头,即原理图中的 Outer IP Header,组成一个 IP 包。并且,在这个 IP 头里,会填上前面通过 FDB 查询出来的目的主机的 IP 地址,即 Node 2 的 IP 地址 10.168.0.3。

然后,Linux 内核会在这个 IP 包前面加上二层数据帧头,即原理图中的 Outer Ethernet Header,并把 Node 2 的 MAC 地址填进去。这个 MAC 地址本身,是 Node 1 的 ARP 表要学习的内容,无需 Flannel 维护。这时候,我们封装出来的“外部数据帧”的格式,如下所示:

image-20201006114011219

这样,封包工作就宣告完成了。

3.4、发送数据包

接下来,Node 1 上的 flannel.1 设备就可以把这个数据帧从 Node 1 的 eth0 网卡发出去。显然,这个帧会经过宿主机网络来到 Node 2 的 eth0 网卡。

这时候,Node 2 的内核网络栈会发现这个数据帧里有 VXLAN Header,并且 VNI=1。所以 Linux 内核会对它进行拆包,拿到里面的内部数据帧,然后根据 VNI 的值,把它交给 flannel.1 设备。而 flannel.1 设备则会进一步拆包,取出“原始 IP 包”。

接下来,就是单机容器网络的处理流程了。最终,IP 包就进入到了 container-2 容器的 Network Namespace 里。

四、小结

在这篇文章中,我们主要讨论了如下概念:

  • UDP模式,通过用户态进程(比如flanneld),对容器的IP包进行UDP再封装,从而构建起一个三层的虚拟网络。
  • VXLAN模式,借助Linux内核的VXLAN机制,对容器的数据帧进行UDP再封装,从而构建起一个二层的虚拟网络。

UDP模式和VXLAN模式的最大区别在于:

  • 在UDP模式下,封装和解封工作需要在用户态完成,存在多次用户态与内核态的切换;
  • 在VXLAN模式下,封装和解封工作都在内核态完成,不存在用户态到内核态的切换。

容器网络2:深入解析容器跨主机网络
https://kuberxy.github.io/2020/10/06/容器网络2:深入解析容器跨主机网络/
作者
Mr.x
发布于
2020年10月6日
许可协议